
Professionalism FURST A summary

1 Professionalism FURST | Copyright© Paul Lynham, 2023

Professionalism FURST

A summary

Paul Lynham FIAP

Introduction
If we needed a lesson in the disasters that arise out of poorly produced software, then we need to

look no further than the Post Office scandal through the use of the Horizon system. Sub-postmasters

were charged with false accounting and defrauding the Post Office, even though external reviews

had shown the software had serious faults. In recent years this scandal has received a great deal of

attention and an official enquiry has been set. Many of the convictions have already been

overturned, but the vast number of criminal convictions resulted in false confessions,

imprisonments, defamation, loss of livelihood and property, bankruptcy, divorce, and even suicide.

The Post Office is likely to face lawsuits for malicious prosecutions, as they allegedly knew many of

the victims were not to blame. Unfortunately, the Post Office may not have the money to pay the

compensations that are likely to be awarded and so the taxpayer may be footing the bill!

Trustworthy Standards
How can we be assured that software is trustworthy and what can be done to prevent software from

causing such disastrous problems? To be trustworthy, the problem domain and the software

produced for it must be risk-assessed and managed. The facets of trustworthiness that need to be

considered are safety, reliability, availability, resilience, and security.

The British Standards Institution (BSI) BS 10754-1 (which came out of work by Trustworthy Software

Initiative) define the overall principles for effective trustworthiness but does not specify the detailed

processes or actions that an organisation needs to follow. The IAP’s John Ellis and Luc Poulin are

working together within the Trustworthy Software Foundation1 (TSF) with other members of the BSI

to expand BS10754 to be more usable by businesses. TSF has a framework2 that can be used to

assess and determine the level of trustworthiness that needs to be applied to a project. In 2020, TSF

became a subsidiary of the IAP.

FURST
To be of value, software must be produced on time, so it can properly address the issues it was

designed for but it must also be compliant with standards and be open for modifications in the

future. Of course, these abilities need to be verified.

A set of principles that can be used in producing trustworthy software is FURST. This stands for Fit

for purpose, Unit tested, Reviewed, Standard, and Timely.

Fit for purpose (FFP) - does what it is supposed to do precisely

Unit Tested – it can be relied upon (doesn’t exclude other testing such as BDD)

Reviewed - all artefacts checked e.g. code and designs are well-written and easy to understand

Standard - complies with all coding, UI, security, and other applicable standards

Timely - produced in time

Professionalism FURST A summary

2 Professionalism FURST | Copyright© Paul Lynham, 2023

As an analogy, the production of a screen used as a component in a computer, laptop, tablet, or

mobile phone can be used in understanding these principles.

A screen needs to be built (and certified) within a clear time limit for it to be profitable for the

manufacturer. It also has to meet certain requirements such as its fidelity in producing displays,

colours, brightness, and contrasts, etc. as well as other non-visual abilities and standards to comply

with, such as power consumption, safety and its ability to be recycled. The manufacturer will employ

a quality engineer to review these requirements and will carry out a series of tests using a test bed

and diagnostic equipment. The testbed and diagnostic equipment are never delivered to the end

user, but without them, it would be uncertain that the product meets all the requirements precisely

and without deficiencies.

Fit For Purpose
Software that does what it was intended to do precisely, without any unintended side effects can be

said to be fit for purpose (FFP). This is not as simple as it first appears, as not only the functional

requirements need to be met or exceeded but also the non-functional requirements. These latter

abilities include its reliability, security, and how efficiently it performs.

FFP equates quality with the fulfilment of a specification. How accurately the requirements meet the

specification is known as its fidelity. However, unless software is to die, it will inevitably need to

change in the future (see Unit Tested in the next section for further details) and so its flexibility or

openness for change becomes a part of its fitness. This openness to change depends on many

factors, such as its design and structure and how easy the source code is to read and update.

This gives us two perspectives3. An external perspective, often of the users, looks at how well the

software does what it is supposed to do (running software), while an internal perspective is

concerned with the quality of the design and implementation and its ability to be updated (static

view).

Many factors affect both the external and internal perspectives, with the author writing extensively

about the latter. Further details can be gained from the IAP website, by navigating to ‘Our Work’ and

then ‘FURST’ to see a list of articles on this subject.

United Tested
To ensure that software meets its requirements, it is tested at different levels. The whole application

or system is tested as part of the quality process to ensure the running software meets all

requirements with no faults or deficiencies (high-level testing). However, although this stage in the

development cycle is always carried out to one degree or another, other testing strategies can be

employed to good effect, and the more that are used, usually, the better the result.

Unit Testing is where individual units of source code are tested to see if they are fit for use. This

often comes down to specific routines in the code i.e. a very low level of testing. These tests are

often placed in their own units or modules, so they can be separated from the functional source

code, thus permitting the test code not to be compiled into or delivered with the finished product.

This level of testing is important for at least two reasons. The first is quite obvious - it allows the

developer to assert that the routine (or smallest unit) works as fully intended, with one or more

Professionalism FURST A summary

3 Professionalism FURST | Copyright© Paul Lynham, 2023

tests for each routine. A routine can be run with different parameters to ensure the expected results

are observed and so tests that check conditions such as unacceptable values or boundary conditions,

can be used to see if they are properly handled.

In time, the requirements of the software will change. New standards arise, government policies,

legal changes, or user expectations, all of which mean the software needs to be updated. With most

applications, if it is not updated in the long term, it dies.

Therefore, the second reason why unit testing is important is that these tests can be run individually

or as a suite to determine that the software still works with each change. This gives confidence and

assurance to the developer to make the necessary changes to the source code without fear of

breaking what is already there – like the Hippocratic oath ‘First do no harm’.

Reviewed
Reviews can be carried out on artefacts at different stages in the development process including

ones for requirements, architecture, design, implementation, and testing. For example, in testing the

test plan can be reviewed as well as any test scripts and test data. However, in this brief discussion,

we will look at code reviews.

Usually, more eyes on the code means fewer bugs and incentivizes higher quality – coders do not

want to be picked up on silly mistakes or sloppy code. If they have a professional attitude, they want

the reviewers to be impressed with their quality code i.e. code that is easy to understand, is clean,

appealing, and efficient.

One of the biggest advantages of code reviews is the number of faults and deficiencies found before

the code goes into testing or production – the earlier a bug is found the easier and the cheaper it is

to fix4. A good review will find more bugs than system testing5. It also has many other benefits, with

perhaps the learning opportunity it provides (for both the reviewer and author) being the next

biggest benefit.

Software developed using pair programming or mob programming also benefits from being

continually reviewed, so not only are requirements interpreted in an agreed manner (if not, the

requirement needs reviewing) but the design, the code, and unit tests are reviewed as the code is

produced. This type of review (although informal) is the closest to production, so is the quickest and

cheapest way to debug software and ensure higher quality.

Standard
Standards are useful for many reasons, although there may be many to choose from! They may be

laid down by the organisation producing the software as well as external ones that need to be

followed, laid down by either best practice, external agencies, or the customer.

The ISO has defined standards as:

“documented agreements containing technical specifications or other precise criteria to be

used consistently as rules, guidelines, or definitions of characteristics, to ensure that

materials, products, processes, and services are fit for their purpose.”6

Some examples of standards used in software development are:

Professionalism FURST A summary

4 Professionalism FURST | Copyright© Paul Lynham, 2023

• Coding and formatting standards

• User and application programming interface standards

• Systems trustworthiness (BS 10754-1:2018)

• Security standards

• Testing standards

• Technical standards e.g. protocols and data format

Taking coding standards as an example, the use of standards maintains consistency throughout the

code base, determining factors such as how code is laid out, how it is documented, naming

conventions, and the use of exception handling, to name a few. When these standards are followed,

‘blots on the landscape’ are avoided and code becomes easier to read and understand. Since code is

read many more times than it is written, this helps speed up the development process.

Timely
Time is of the essence – even if quality is high. It usually has a major bearing on the viability of the

project and many projects have failed because they have overrun. It may affect the profitability of

the organisation or its operational success.

Depending on the development process being used, it is sometimes possible to get a minimum

viable product out (a product with just enough features to ensure it is useable) and then work on the

remaining features, while gaining useful feedback from the users. Agile methodologies are

supportive of this latter approach, but other software may need to be completely finished before it

can be deployed.

The success of meeting time deadlines is dependent on several factors. These include the accuracy

of the estimation of the effort, the recording of work completed, and the efficiency of the

development team. The latter is dependent upon team leadership and the productivity of individual

team members. Individuals’ productivity is affected by their own standards and is also affected by

their working environment and the culture of the organisation they are working for7. In reality, this

last factor may have the greatest influence.

Therefore, techniques that aid time management and efficiency will have an effect on achieving time

goals. One example that can be effective for developers is the use of the Pomodoro Technique8 and

another the Personal Software Process9. Depending on the development process, several techniques

can be used to improve team dynamics10. However, changing the culture of the organisation is more

difficult11.

Bringing It Together
All these principles may seem daunting and you may wonder how they can be applied to a project?

There are several concerns and these arise at different levels within the organisation, from the

strategists, and highest managers, right down to members of the development team.

The commitment to produce trustworthy software at each level is important and it could be argued

that it needs more than voicing but committed to words in statements of vision, missions, or goals,

and demonstrated, so there is no doubt in anyone’s mind that this is what is at the heart of what is

being produced.

Professionalism FURST A summary

5 Professionalism FURST | Copyright© Paul Lynham, 2023

Compliance can be achieved using various tools and these can be linked into ‘tool chains’ so that one

operation or process automatically kicks off another. Gates within the process check that procedures

have been completed before the process can continue.

Over the years, the author has seen build tools evolve from simpler implementations that compiles

(if necessary) and runs the application, perhaps running some tests and giving feedback, either via

email or by a tray icon, etc. These tools have now been highly refined and cover the complete cycle,

integrating various tools and development languages, and virtual machines.

As an example, a tool may be used for planning, say an agile Kanban-type tool where stories are

curated, tasks pulled out onto a sprint, and assigned to a development team member. A

programmer could select a task, with a feature branch in the repository being automatically created

and, in some cases, the source code automatically downloaded onto the developer’s machine. After

the task has been completed the code is submitted, the Kanban app is updated with the current

state of the task and reviewers are notified that the code for this task needs to be reviewed.

Some tasks may be automatically kicked off such as applying a standard format to the code, running

an audit (such as checking no unauthorised libraries are being used), static analysis carried out, and

the software run on a virtual machine, with tests run against it and the results posted. This latter

step in itself can be quite complex, as the platform can be configured (hardware, OS, dependent

software installed) and the machine automatically built and spun up, so any tests are consistent and

are not dependent on any settings or files present on the developer’s machine.

At this point, the developer can do no further work on this task until the review has been completed

(or changes that come out of the review have been applied). When the review process has been

passed the code can be merged (if required), and the application built and placed in an appropriate

test environment. However, it can be seen that there are lots of tools strung together using scripts

and triggers with applications, repositories, and databases updated and on and on.

Such tool chaining is great for automating compliance, assessing the software, and verifying that all

required procedures have taken place. However, setting up and configuring such tools may not be

straightforward and often requires a specialist DevOps member, rather than allow developers to

spend an inordinate amount of time trying to configure such applications themselves.

With the advent of more sophisticated AI tools, quality can be improved while the software is being

created e.g. an application running in the background while the programmer types the code could

check for typos, errors or side effects, picking up things that the inbuilt development environment

language interpreter or compiler may not pick up on.

Professionalism
Although many people from different walks of life write software, the key distinction is professional

software is intended for others (rather than the developer themselves), and teams more often than

individuals usually develop the software. In these circumstances, the software is maintained and

updated throughout its life.

The attitude of the software developer is very important, both in terms of their willingness to learn

new languages, tools and techniques, etc. but also their ethical outlook, so they treat the

information they receive with the correct level of privacy and security. Their attitude and behaviour

Professionalism FURST A summary

6 Professionalism FURST | Copyright© Paul Lynham, 2023

to both the organisation and their team are also important if they are to be highly productive. Of

course, this responsibility goes both ways, so both other team members and the organisation need

to encourage and provide developers with the opportunities to fulfil these ideals.

The IAP has a Code of Conduct12 that all members must abide by and this sets out in clear terms

what is expected of a professional software developer. There has also been debate about whether a

Hippocratic Oath for Software Developers13 should be created, based upon ones used in medicine.

Conclusion

It can be seen that there are ways in which trustworthy software can be built – The TSF has a

framework to help and BSI has the BS 10754-1 standard. However, at its most basic level, those

involved in its development must be highly professional and highlight concerns about any issues that

may impinge upon the trustworthiness of the software being produced.

There must be a commitment by the organisation producing the software. This needs more than a

box-ticking exercise but an obligation to embrace this ethos and to clearly demonstrate this.

There are clear principles that can be followed that will allow trustworthy software to be produced

and the FURST acronym has been briefly summarised to mark these out at a high level. Each of the

principles within FURST is not difficult to comprehend and to many, they will make perfect sense.

It is true, that there is more to each principle than meets the eye, but this is nearly always true when

something is useful. However, there is also a layering effect between these principles – they do not

exist in pure isolation but feed off each other and help each other, as shown below.

As an example, standards help the software meet its obligation to be fit for purpose, they set out

guidelines for unit testing and can be used for compliance within a review. Using existing standards,

rather than trying to reinvent the wheel saves time, bringing familiarity and consistency.

By professionally utilising FURST, the trustworthiness of the software can only be enhanced, and

those involved in its production can feel satisfied that they have done a good job.

Professionalism FURST A summary

7 Professionalism FURST | Copyright© Paul Lynham, 2023

1 https://www.tsfdn.org/
2 https://www.tsfdn.org/ts-framework/
3 https://wiki.c2.com/?InternalAndExternalQuality
4 https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc
5 https://kevin.burke.dev/kevin/the-best-ways-to-find-bugs-in-your-code/
6 https://www.iso.org/obp/ui/#iso:std:iso:tr:19300:ed-1:v1:en
7 https://www.codurance.com/publications/why-is-culture-so-important-in-software-development
8 https://francescocirillo.com/products/the-pomodoro-technique
9 https://www.win.tue.nl/~wstomv/quotes/humphrey-psp.html
10 https://www.agileconnection.com/article/7-ways-change-culture-devops-success#:
11 https://cyclr.com/blog/change-organisational-culture-for-digital-transformation
12 https://www.iap.org.uk/main/about/code-of-conduct-for-members/
13 https://queue.acm.org/detail.cfm?id=1016991

https://www.tsfdn.org/
https://www.tsfdn.org/ts-framework/
https://wiki.c2.com/?InternalAndExternalQuality
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc
https://kevin.burke.dev/kevin/the-best-ways-to-find-bugs-in-your-code/
https://www.iso.org/obp/ui/#iso:std:iso:tr:19300:ed-1:v1:en
https://www.codurance.com/publications/why-is-culture-so-important-in-software-development
https://francescocirillo.com/products/the-pomodoro-technique
https://www.win.tue.nl/~wstomv/quotes/humphrey-psp.html
https://www.agileconnection.com/article/7-ways-change-culture-devops-success
https://cyclr.com/blog/change-organisational-culture-for-digital-transformation
https://www.iap.org.uk/main/about/code-of-conduct-for-members/
https://queue.acm.org/detail.cfm?id=1016991

